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Abstract

Background Detecting cancer at early stages significantly increases patient survival rates.

Because lethal solid tumors often produce few symptoms before progressing to advanced,

metastatic disease, diagnosis frequently occurs when surgical resection is no longer curative.

One promising approach to detect early-stage, curable cancers uses biomarkers present in

circulating extracellular vesicles (EVs). To explore the feasibility of this approach, we

developed an EV-based blood biomarker classifier from EV protein profiles to detect stages I

and II pancreatic, ovarian, and bladder cancer.

Methods Utilizing an alternating current electrokinetics (ACE) platform to purify EVs from

plasma, we use multi-marker EV-protein measurements to develop a machine learning

algorithm that can discriminate cancer cases from controls. The ACE isolation method

requires small sample volumes, and the streamlined process permits integration into high-

throughput workflows.

Results In this case-control pilot study, comparison of 139 pathologically confirmed stage I

and II cancer cases representing pancreatic, ovarian, or bladder patients against 184 control

subjects yields an area under the curve (AUC) of 0.95 (95% CI: 0.92 to 0.97), with sensi-

tivity of 71.2% (95% CI: 63.2 to 78.1) at 99.5% (97.0 to 99.9) specificity. Sensitivity is similar

at both early stages [stage I: 70.5% (60.2 to 79.0) and stage II: 72.5% (59.1 to 82.9)].

Detection of stage I cancer reaches 95.5% in pancreatic, 74.4% in ovarian (73.1% in Stage

IA) and 43.8% in bladder cancer.

Conclusions This work demonstrates that an EV-based, multi-cancer test has potential

clinical value for early cancer detection and warrants future expanded studies involving

prospective cohorts with multi-year follow-up.
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Plain Language Summary
Finding cancer early can make treat-

ment easier and improve odds of

survival. However, many tumors go

unnoticed until they have grown large

enough to cause symptoms. While

scans can detect tumors earlier, rou-

tine full-body imaging is impractical

for population screening. New cancer

detection methods being explored

are based on observations that

tumors release tiny particles called

extracellular vesicles (EVs) into the

bloodstream, containing proteins

from the tumor. Here, we used a

method to purify EVs from patients’

blood followed by a method to detect

tumor proteins in the EVs. Our

method quickly and accurately

detected early-stage pancreatic,

ovarian, or bladder cancer. With fur-

ther testing, this method may provide

a useful screening tool for clinicians

to detect cancers at an earlier stage.
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Detecting cancer early before symptoms present is key to
improving patient survival. While not all emergent
tumors will become deadly, for those destined to become

so, the ability to treat the disease while it is still localized is a
major factor for improving 5-year survival rates1. Pancreatic
ductal adenocarcinoma (PDAC), one of the deadliest cancers and
a leading cause of all cancer-related deaths in the United States,
typically goes undetected until it spreads and becomes unresect-
able and metastatic2. In contrast, for the few patients (~15%)
diagnosed with localized disease, the 5-year survival rate rises to
about 25% and when PDAC is detected at Stage I, survival rates
can be as high as 80%3. Likewise, ovarian cancer typically has few
symptoms and is often undetected until it is advanced, with
5-year survival rates of <31%4. When detected early, 5-year sur-
vival rates for localized ovarian cancer jump to a remarkable 93%,
but currently, only 15% of cases are detected at early stages5. For
metastatic bladder cancer, 5-year survival rates are only 6%, while
detection when the tumor is still localized to the bladder wall
inner layer results in an improved 5-year survival rate of 96%6.
Importantly, treatment of localized bladder cancer has less
morbidity and better quality of life compared to treatments
required for metastatic cancer7.

Currently, there are few general screening strategies to detect
asymptomatic, early-stage PDAC, ovarian, or bladder cancer8.
Given recent advances in targeted treatments for cancer, which
are based on functional changes in the genome and proteome of
individual tumors and their milieu, attention has turned to the
possibility of detecting these changes directly from blood, i.e., by
liquid biopsy1,9. This strategy has been utilized to design multi-
cancer early detection (MCED) tests that involve blood-based
circulating proteins and/or DNA mutations and methylations
followed by machine learning approaches to discern between
cancer and non-cancer cases10–15. Several MCED tests based on
these approaches are being developed and have shown promise
for detecting clinically significant, late-stage (III and IV) cancers,
and that detection was prognostic beyond tumor stage16.
Detecting early, stage I, and II cancers with high enough sensi-
tivity for population-level screening, however, has proven much
more challenging12–14.

One potential approach for more sensitive detection of cancer-
related biomarkers from blood involves the use of extracellular
vesicles (EVs) such as exosomes, 30 to 150 nm vesicles that
mediate cell-to-cell communication17,18. It has been shown that
some exosomes are ejected by tumors into the bloodstream and
they carry functional protein biomarkers representing the tumor
proteome18,19. The potential to better detect cancer using EV-
bound protein biomarkers has recently been suggested for mul-
tiple cancer types20 using various methodologies, such as mass
spectrometry for lung and pancreatic cancers21. Currently, the
gold standard method for isolating EVs from soluble con-
taminants (cells, small proteins, or other vesicles) is ultra-
centrifugation (UC), which is inefficient and not suitable for
point-of-care applications22. To address this issue, many groups
have explored a variety of methods, based on immunoaffinities
and/or diverse membranes, to both isolate and analyze circulating
EVs and associated markers17. In this study, we used an alter-
nating current electrokinetic (ACE)-based platform (Verita™
System)23 to efficiently purify exosomes and other EVs from
patient samples, then measured the concentrations of associated
protein biomarkers (“EV proteins”) present in the purified EV
samples from our case-control study subjects. Using the infor-
mation about the differing EV protein concentrations, we
developed a machine-learning algorithm to identify a small set of
EV biomarkers which together with age permits detection of
early-stage pancreatic, ovarian, and bladder cancers. We find that
using ACE purification of EVs, followed by a specialized analysis

of the EV protein biomarkers, successfully predicts the presence
of early stage I–II pancreatic, ovarian, and bladder cancers with a
sensitivity of 71.2% (95% CI: 63.2–78.1) at 99.5% (97.0–99.9)
specificity, and an AUC of 0.95 (95% CI: 0.92–0.97). To our
knowledge, we are the first to report feasibility for a blood based,
MCED test for the detection of stage I and II cancers that
employs circulating EV proteins exclusively.

Methods
Sample collection and processing. All specimens for this retro-
spective study were collected over a period of several years by a
commercial biorepository (ProteoGenex, Inglewood, CA, USA).
Stage I and II samples were selectively obtained from available
inventory. Samples had been collected from patients in hospital
settings and following collection were maintained by the com-
mercial biorepository. All relevant ethical regulations were fol-
lowed, and informed consent was obtained prior to sample
collection. The protocol was approved by the ethics committee at
the N. N. Blokhin National Medical Research Center of Oncology.
In the hospital settings, potential cancer patients were identified by
any suspicious findings arising during imaging that was conducted
either in response to patient symptoms or as part of routine,
annual examinations. We do not have access to information on
which patients were symptomatic and which were asymptomatic.
Cancers were confirmed via subsequent tissue biopsy and staged
by pathologists in the hospital using pathology and surgical
reports, according to AJCC (7th edition) guidelines, along with
imaging to assess any spread to distant sites. All subjects with
confirmed diagnosis of cancer were treatment naive (prior to
surgery, local, and/or systemic anti-cancer therapy) at the time of
blood collection. The biorepository provided the patient samples
along with demographics, surgical, and pathology information.
Through the analysis of these data, staging for patients was
reviewed a second time for accuracy by the study authors. Our
study did not require ethics approval because samples were de-
identified after processing by the biorepository. Since ovarian
cancer patients did not uniformly undergo comprehensive surgical
staging, an occult disease higher than the indicated stage cannot be
ruled out. The control group has no known history of cancer,
autoimmune diseases, or neurodegenerative disorders, nor any
presence of diabetes mellitus (types 1 and 2). A total of 323 sub-
jects were included in the study, including 139 subjects (‘Cancer
case patient cohort’) who were diagnosed with one of the three
cancers between January 2014 and September 2020. In the cancer
case cohort, whole venous blood specimens were collected shortly
before biopsy (median −1 day, mean −2.7 days), and prior to
surgical intervention, radiation therapy, or cancer-related systemic
therapy. The median age was 60 years [Min–Max 21–76] in the
cancer case cohort (N= 139, 56 males, 83 females) and 57 years
[Min–Max 40–71] in the control cohort (N= 184, 82 males and
82 females). Details on the case-control cohorts can be found in
Supplementary Data 1 and Supplementary Data 2. Whole blood
samples were collected in K2EDTA plasma vacutainer tubes and
processed into plasma within 4 h of collection. The whole blood
was first spun at 1500 × g for 10 min at 4 °C with no brake used.
After the first spin, plasma was transferred into fresh tubes and
subjected to a second spin at 1500 × g for 10min. After the second
spin, plasma was aliquoted into 1 mL tubes and frozen within 1 h
at −80 °C. All specimens used in this study were processed under
identical conditions.

EV/exosome isolation and particle characterization
Isolation of EVs using the Verita™ Platform. EVs, including exo-
somes, were extracted from plasma as previously described using
an AC Electrokinetic (ACE)-based isolation method (Biological

ARTICLE COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-022-00088-6

2 COMMUNICATIONS MEDICINE |            (2022) 2:29 | https://doi.org/10.1038/s43856-022-00088-6 | www.nature.com/commsmed

www.nature.com/commsmed


Dynamics, CA, USA) as shown in Fig. 123–25. Briefly, 240 µL of
each undiluted plasma was introduced into a Verita™ chip, and
an electrical signal of 7 Vpp and 14 KHz was applied while
flowing the plasma across the chip at 3 µL/min for 120 min. EVs
were captured onto the energized microelectrode array, and
unbound materials were washed off the chip with Elution Buffer
I (Biological Dynamics) for 30 min at 3 µL/min. The electrical
signal was turned off, releasing EVs into the solution remaining
on the chip (35 µL), which was then collected, and this solution
containing purified, concentrated/eluted EVs was used directly
for further analysis. This method has also been used previously
for the isolation of cell-free DNA, exosomal RNA, and exosomal
protein markers in both solid-tumors and hematological
malignancies24–29. The Verita-purified EVs were characterized
using nanoparticle tracking analysis (NTA) via ZetaView
instrument (Particle Metrix, Inning am Ammersee, Germany).
Supplementary Data 3 shows the particle size and concentration
values for the EVs isolated from each subject in the cohorts while
Fig. S1 shows comparisons between the case and control cohorts.

Isolation of EVs via differential ultracentrifugation. A subset of
case and control samples were subjected to differential ultra-
centrifugation as a conventional means of EV isolation21. In brief,
760 µL of 1× PBS was added to 240 µL of each subject plasma,
then spun successively at 500 × g for 10 min, 3000 × g for 20 min,
and 12,000 × g for 20 min, collecting the supernatants after each
step. Subsequently, the resulting supernatant was subjected to
ultracentrifugation at 100,000 × g for 70 min, pellets were washed
in 1× PBS and then ultracentrifuged again at 100,000 × g for
70 min. The supernatant was discarded, and the resulting pellet
was resuspended in 120 µL of 1× PBS for further analysis (Fig. 1).

Protein contamination analysis. To determine the presence of
contaminating total protein in the EV preparations from both the
Verita™ platform and the differential ultracentrifugation process,
samples were analyzed using the Qubit 4 fluorometer (Thermo-
Fisher Scientific, Waltham, MA) with the Qubit™ Protein quan-
titation assay (Cat No. Q33212, ThermoFisher Scientific,
Waltham, MA), run according to manufacturer specifications. To
further understand the composition of the contaminating pro-
teins on the isolation products, we used the 2100 Bioanalyzer
(Agilent, Santa Clara, CA) with the Protein 230 kit for protein
analysis (Cat No. 5067-1517) following the manufacturer’s
directions.

Protein biomarker analysis. Verita-isolated EV samples, as well as
original, unpurified plasma samples from the same patients, were
used directly in commercial multiplex immunoassays to quantify
the presence of marker proteins. In brief, 25 µL of each purified
EV sample was used for analysis by each of three different bead-
based immunoassay kits, according to the manufacturer’s direc-
tions for each kit (Human Circulating Biomarker Magnetic Bead
Panel 1 (Cat # HCCBP1MAG-58K), Human Angiogenesis
Magnetic Bead Panel 2 (Cat # HANG2MAG-12K), and Human
Circulating Cancer Biomarker Panel 3 (Cat # HCCBP3MAG-
58K); Millipore Sigma, Burlington, MA). Protein biomarker
concentration was assessed using the MAGPIX system (Luminex
Corp, Austin, TX) according to the manufacturer’s protocols.
Belysa software v. 3.0 (EMD Millipore) was used to determine
final protein concentrations from the calibration curves. Limit of
detection (LOD) and units of measure for each of the biomarkers
are listed in Supplementary Data 4.

Spike EV isolation models for EV biomarker signal. To further
understand the presence of relevant protein biomarkers on the
EVs, we employed EVs purified from cell culture supernatants
representing two different cell lines as positive controls. The cell
line H1975 (ATCC CRL-5908™) is known to express the CA19-9
marker (ST6 N-acetylgalactosaminide alpha-2,6-sialyltransferase
1) while the cell line HeLa (ATCC CRM-CCL-2™) is known to
express the CA 125 marker (Mucin16). Briefly, the H1975 EVs
were spiked at three different concentrations (from 4.60 × 109 to
1.15 × 109 particles/mL) into K2EDTA plasma, the EVs were
isolated using the Verita™ platform, and subsequently analyzed
via a bead-based immunoassay for the presence of the CA 19-9
biomarker. The linear response to EV input (marker values ±
standard deviation) is shown in Fig. S2. In another experiment,
the H1975 EVs and the HeLa EVs were spiked into K2EDTA
plasma and isolated using the VeritaTM platform. The biomarker
reading results confirm the positive detection of the respective
expected signals with CA19-9 being elevated for the H1975 EVs
and CA 125 being elevated for the HeLa EVs (Fig. S2).

Statistics and reproducibility. Each case or control sample was
measured in duplicate or triplicate (depending on volume avail-
ability) with one chip eluate going to one reaction well in the
multiplex immunoassay plate. No pooling or dilution of the
eluates was performed. The same approach was followed for the

Fig. 1 Schematic showing EV isolation workflows using either Verita™ or ultracentrifugation methods. a Workflow using the Verita™ Isolation platform.
As plasma samples are flowed onto the energized AC Electrokinetics (ACE) microelectrode array, EVs are collected onto the electrodes. Unbound
materials are removed with a buffer wash, the electric field turned off, and EVs are eluted into the buffer. b Workflow for differential ultracentrifugation.
Plasma samples are diluted, and large debris pelleted by a low-speed centrifugation step. Supernatants are removed and subjected to two additional cycles
of low-speed centrifugation. EVs in the cleared supernatants are then ultracentrifuged two times, and lastly the pellet is resuspended in buffer.
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differential ultracentrifugation experiments where each immu-
noassay well contained a single resuspended pellet.

Biomarker selection. From an initial evaluation of 42 EV proteins,
34 different biomarkers with <50% of values missing or below the
LOD were considered (Supplementary Data 2 and Supplementary
Data 4). In cases with missing values or results below the LOD,
values were set (imputed) to the LOD. Distributions for all bio-
markers were evaluated and distributions were found to be wide;
thus, we used a Log2 transformation on all EV protein biomarker
values in subsequent analyses. Subsequently, we explored the
correlations among the biomarkers using the R module ‘Corrplot’
to determine the potential for multicollinearity in building clas-
sification models (correlation heatmap from all the biomarkers
measured are shown in Fig. S3). To determine the most infor-
mative biomarkers, recursive feature elimination with fivefold
cross-validation30 was employed using the R module “caret”. In
this methodology, four of the five folds are used for selecting a
subset of biomarkers using stepwise backwards selection. This
process is repeated five times, using each fold once as a held-out
test set. As the folds of cross-validation are chosen at random, this
was repeated 100 times and the subset of biomarkers that max-
imized the partial AUC (pAUC)31 over the range of specificities
from 0.75 to 1.00 across all test sets was selected (Fig. 2).

Coefficient determination and performance evaluation. Once
the biomarkers were selected, an initial partition of the data into
training (67%) and test (33%) sets, stratified by cancer types,
allowed us to determine the performance of the biomarkers
selected by estimating the regression coefficients for the model
using the training set and evaluating the classification perfor-
mance in the held-out test set (Fig. 2). To pursue a fair assessment
of our model, given our relatively small sample size and to avoid
overfitting30,32–34, we resampled 100 independent training and
test sets (made up of 2/3 and 1/3 of the 323 individuals stratified
by cancer type) from the overall data set. The subjects in the
training set, for each resample, were used to estimate biomarker
regression coefficients in the model whereas the diagnostic per-
formance was assessed independently in subjects in the held-out
test set. Receiver-operator characteristic (ROC) curves, area under
the curve (AUC), sensitivity, specificity, and related metrics were
computed for the test sets based on the individual fits for each of
the subjects in each respective partition (Supplementary Data 5).
For each of the held-out test sets, a threshold determination of
>99% specificity was computed (because there were 61 control
subjects in each held-out test set, this effectively means calling 61
out of 61 correctly) and subsequently, the average threshold was

determined (Supplementary Data 6). Using the average threshold
and the average fit in the test set for each subject, we then eval-
uated the performance for the overall cohort as well as for sub-
cohorts (e.g., pancreatic cancer). The 95% confidence intervals for
AUC were calculated using a bias-corrected bootstrapping
method (N= 2000)35 while the confidence intervals for perfor-
mance metrics, i.e. sensitivity and specificity, were calculated
based on the Wilson two-sided method36. During the evaluation
of the logistic regression model, we assessed the importance of
each biomarker selected using the average standardized coeffi-
cients (Supplementary Data 7). Here “importance” can be
understood as a quantitative comparison between predictors. One
predictor is more important than another if it contributes more to
the prediction of the response variable across all the models
considered in the regression.

Additional analysis and plotting. Additional analysis and plotting
in both the main text and the supplementary information were
performed in GraphPad Prism (Version 9.0.2) and JMP Pro
(Version 16.1.0).

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results and discussion
Using the Verita™ system, we isolated EVs from both control
plasma and plasma from stage I and II pancreatic, ovarian, and
bladder cancer cases (Fig. 1, Supplementary Data 1 and Supple-
mentary Data 2). Previous studies have shown that the EV
populations isolated using the ACE technology are consistent
with the presence of exosomes, in accordance with the ISEV 2018
guidelines37 (mean particle sizing ~120 nm; CD63-positive;
TSG101 can be detected only following membrane permeabili-
zation; SEM images display rounded, cup-shaped morphology;
contain functional RNA)23,24,28. After EV isolation, we measured
the particle size distribution and concentration and confirmed
equivalent isolation for both cohorts (Supplementary Data 3 and
Fig. S1). To simulate a real-world screening scenario, all cancer
cases were treatment-naïve; to ensure that these were early-stage
patients, the histopathologic staging was confirmed using the
American Joint Commission on Cancer (AJCC) guidelines. The
median age of the cancer cases was 60 years (59.7% female, 40.3%
male; Supplementary Data 1). Notably, 63.3% of the overall
cancer cases were stage I, with the remaining 36.7% at stage II.
Furthermore, the stage I ovarian cohort was comprised pre-
dominantly (60%) of stage IA samples. The control group had no

Fig. 2 Development of classification algorithm for multi-cancer early detection. Biomarker selection is performed via recursive feature elimination (RFE)
with cross validation. After the biomarkers are selected, the dataset is split into training and test sets. The training set is used for the determination of the
coefficients in the logistic regression for each biomarker and the test set is used to evaluate the performance of the logistic regression fit from the training
set in a held-out test set. Finally, the process of splitting the dataset into training and test sets is randomly repeated 100 times for performance
confirmation.
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known history of cancer, autoimmune diseases, or neurodegen-
erative disorders, nor any presence of diabetes mellitus, with a
median age of 57 years (50.0% female, 50.0% male).

To evaluate the advantages of using ACE-isolated EVs for
proteomic analysis, EVs were isolated from a subset of case and
control patient samples using either Verita™ or a differential
ultracentrifugation method (Fig. 1). Following isolation, the only
physical difference observed between the two methods was a slight
decrease in average particle size for EVs isolated on the Verita™
platform (138 nm for UC versus 120 nm for ACE EVs; Fig. 3a).
Further breakdown of the particle size distributions is shown in
Fig. S4. When EVs prepared by the two methods were assessed for
total plasma protein content, the UC EV preparations were found
to contain much higher levels than the ACE EVs (Fig. 3b). For
example, contamination with the plasma protein IgG was much
higher in the UC isolated material (Fig. S4). This is consistent with
previous reports that UC-prepared EVs co-purify with protein and
nucleic acid aggregates38. When EVs purified by the two different
methods were compared for their protein biomarker signals we
found a strong differentiation between cases and controls for two
key biomarkers (CA19-9 and CA 125) from the ACE-isolated EVs,
but not for the UC-isolated EVs (Fig. 3c, d). A summary of the
measurements for the EVs from both isolation techniques is
shown in Supplementary Data 8. These results suggest that the
ACE EV isolation can be a suitable tool for the purification of EVs
directly from plasma and may thus provide a relevant avenue for
proteomic analysis. Furthermore, EV isolation using the Verita™
platform is more efficient, the entire process takes about 2 h since
no added pre- or post-processing steps are required, it does not
rely on immunoaffinities, and it involves less of the sample

handling which can damage the EVs39. Most importantly, unlike
UC, ACE isolation of EVs has the potential to be integrated into
high-throughput, automated systems.

Our case-control study involved measurements of the levels of
42 EV-associated protein biomarkers for both the study cohort
cancer cases (47 pancreatic, 44 ovarian, 48 bladder) and the
controls (184 controls) via a multiplex immunoassay, and an
individual assessment of each protein level was performed (pro-
tein measurements are shown in Supplementary Data 2 and
heatmaps of the normalized protein levels are shown in Fig. S5).
In addition. levels of the unpurified, total circulating plasma
proteins (“free proteins”) were measured from the same study
cohorts (Supplementary Data 2; Fig. S5). To identify the EV-
associated protein biomarkers with the largest differentiation
potential, a process was employed to select the biomarkers using
recursive feature elimination (RFE) with cross-validation30,34.
The use of repeated cross-validation worked best within the
limitations of the sample size for this pilot study (N= 323). One
hundred repetitions of fivefold cross validation were performed
(Fig. 2), and across all repetitions, the RFE algorithm used step-
wise backwards selection to arrive at the optimal number of
biomarkers that maximized the partial AUC (pAUC)31. By
optimizing the p(AUC) between specificities of 0.75 and 1.00 we
aimed to tailor the biomarker selection towards the reduction of
false-positive occurrences (a control mistakenly called as cancer),
since this is critical for MCED-type approaches in order to reduce
the costs associated with false-positive testing8. This strategy
resulted in the selection of 13 EV protein markers. After the
biomarkers were selected, our cohort was separated at random
into a training set (67% of the samples) and a held-out set (33% of

Fig. 3 Characterization of EVs isolated by either Verita™ or differential ultracentrifugation. a Distribution of particle sizes as determined by nanoparticle
tracking analysis. Blue line represents the particle distribution from Verita™ isolation (N= 25 subjects) while the gray line represents the isolation from
differential ultracentrifugation (N= 25 subjects). b Levels of residual contaminating total proteins based on Qubit™ protein assay (N= 25 subjects for each
isolation methodology). The ability to differentiate cancer cases from controls based on biomarkers CA 19-9 and CA125 is shown for EVs isolated using the
Verita™ isolation in panel (c), and EVs isolated by differential ultracentrifugation in panel (d). In both (c), (d) panels, the N for Controls is 11 subjects, and
the N for Cancers is 14 subjects.
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the samples) stratified by cancer type (pancreatic, ovarian, and
bladder) to estimate the respective coefficients for each biomarker
in the logistic regression model exploring the potential for
detection of cancer at early stages (Fig. 2). The individual logistic
regression coefficients were estimated using the training set, while
the performance was evaluated in the held-out test set. Box plots
comparing cases and controls for the 13 selected biomarkers are
shown in Fig. S6, their coefficient and importance score are
shown in Supplementary Data 7, and their Pearson correlation
coefficients are shown in Supplementary Data 9 and Fig. S7.

This performance evaluation was strengthened by employing
the widely-used statistical process of resampling which better
represents how a larger dataset will perform30,32,33,40. By resam-
pling, we could evaluate if the initial random partition created an
unrealistic model due to a rare distribution of subjects in that
initial partition. We randomly resampled 100 training and test sets
(2/3 and 1/3 of the subjects, respectively) from the overall data and
generated 100 individual logistic fits for the training portion; from
these fits we generated individual ROC curves for the test sets
(Fig. 4a). Likewise, each time a subject is featured in the held-out
test set, a fit for their logistic model is produced and subsequently
averaged among all the times that specific subject was used in a
test set (Supplementary Data 5) and from these average fits the
overall performance of the model can be assessed. The perfor-
mance for each of the 100 randomly partitioned test sets can be
assessed individually which, when an average threshold for the
target specificity of >99% is computed, permits determination of
the overall average sensitivity and confidence intervals.

When the overall cancer case cohort was compared with the
control individuals using the EV protein biomarker test, the average
AUC was found to be 0.95 (95% CI: 0.92–0.97) as shown in Fig. 4a,
with an average sensitivity of 71.2% (95% CI: 63.2–78.1) at a spe-
cificity of 99.5% (95% CI: 97.0–99.9), as shown in Table 1. For the
average of the 100 test sets, the AUC for the exo-proteins was found
to be larger than that of the equivalent plasma free-proteins
(Fig. S8), at 0.95 vs. 0.87, respectively. When considered across all
the three cancers studied, our EV protein test demonstrated sen-
sitivities of 70.5% (95% CI: 60.2–79.0) and 72.5% (95% CI:
59.1–82.9) for stage I and II patients, respectively (Fig. 4b and
Table 1). Furthermore, we analyzed the sensitivity at >99% speci-
ficity for each individual cancer, finding values of 43.8% (95% CI:
30.7–57.7) for bladder cancer, 75.0% (95% CI: 60.6–85.4) for

ovarian cancer and 95.7% (95% CI: 85.8–98.8) for pancreatic cancer
(Fig. 4c). These results suggest that EV proteins have the potential
for detecting early-stage cancers at screening-relevant sensitivities.

The 13 EV protein biomarkers identified here span a wide
range of biological functions that may represent pivotal points in
cancer development. Neuropilin-1 and CA15-3 mediate aberrant
growth factor signaling in early malignancies41,42. CA 19-9, MPO,
and TIMP-1, known cancer drivers, were previously utilized in
another multi-cancer test14. Neuropilin-1 and sE-selectin are
known drivers of angiogenesis processes43,44 while exosomal
Cathepsin-D, MIA, IGFBP3, sFas, and Ferritin have been shown
to impact tumor progression19,21,45–48. sFAS has been shown to
promote cancer stem cell survival49, and bHCG may regulate
epithelial to mesenchymal transition events in ovarian cancer cell
progression50. Several of the proteins have previously been shown
to be present in EVs51–55. Total serum CA-125 is approved for
use in monitoring treatment response and recurrence for ovarian
cancer, but it is not recommended to be used as a screening
marker56. Similarly, total serum CA19-9 is FDA-approved for
pancreatic cancer treatment and recurrence monitoring, but
importantly, not for screening since on its own CA19-9 may be
elevated in several benign conditions57.

To further understand the potential utility of the EV protein-
based test, we evaluated performance at stage for each cancer and
compared sensitivities at the 99.5% specificity determined from
the overall analysis. With the caveat that our sample size for each
cancer type was relatively small, the test demonstrated very high
sensitivities in detecting both the 22 stage I (95.5%; CI: 78.2–99.2)

Fig. 4 Overall performance for detecting the presence of early cancer using an EV protein-based logistic classifier. a ROC curves from comparison of
the cancer cases (N= 139) to the controls (N= 184) on the held-out test sets; black line represents the averaged curve of 100 independently resampled
held-out test sets (gray lines). AUC area under the ROC curve. b Sensitivities at >99% specificity for detecting either stage I or stage II pancreatic, ovarian,
and bladder cancers combined. N for stage I cancers is 88 subjects and the N for stage II cancers is 51 subjects. c Sensitivity at >99% specificity for
detecting either stages I and II pancreatic (N= 47), ovarian (N= 44), or bladder (N= 48) cancer. Error bars in both panels (b), (c) represent the two-sided
95% Wilson confidence intervals.

Table 1 Performance of logistic classifier using EV proteins.

Category # Subjects Specificity
(%, 95% CI)a

Sensitivity
(%, 95% CI)a

Controls 184 99.5 (97.0–99.9)
All cancer cases 139 71.2 (63.2–78.1)
Stage I 88 70.5 (60.2–79.0)
Stage II 51 72.5 (59.1–82.9)
Pancreatic cancer 47 95.7 (85.8–98.8)
Ovarian cancer 44 75.0 (58.9–85.4)
Bladder cancer 48 43.8 (30.7–57.7)

aTwo-sided 95% Wilson confidence intervals.
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and 25 stage II PDAC patients (96.0%, CI: 80.5–99.3) (Fig. 5a),
indicating a potential breakthrough for the early detection of this
malignancy. Detection of stage I ovarian cancer (N= 39) was also
at levels with potential clinical impact (74.4%, CI: 58.9–85.4) as
shown in Fig. 5b. We further broke down our ovarian cancer
cohort into both the lethally aggressive serous adenocarcinoma
histology (stage I/II, N= 22) and stage IA (N= 26), showing
sensitivities ranging from 68.2% (CI: 47.3–83.6) to 73.1% (CI:
53.9–86.3 CI) at >99% specificity, respectively. Early detection of
either subtype could impact survival rates, as surgery would likely
be curative. In bladder cancer, the test was able to detect the
27 stage I patients at 44.4% (CI: 27.6–62.7), and the 21 stage II
patients at 42.9% (CI: 24.5–63.5) as shown in Fig. 5c. The lower
sensitivities for bladder cancer, compared to the high sensitivities
for pancreatic and ovarian cancer, may reflect the limited avail-
ability of suitable biomarkers for detecting early-stage bladder
cancer in the panels we evaluated. In addition, bladder cancer is
known to have high molecular and histologic heterogeneity58,59.

Taken as a whole, these results suggest that the EV-based
protein biomarker test is not biased toward any sub-cohort within
each cancer. While PDAC and ovarian cancer detection require
~99% specificity to be viable for population-level screening, an
argument could be made that bladder cancer may benefit from a
lower specificity threshold. Treatment for late-stage bladder
cancer has a significant impact on quality of life and it is among
the most expensive cancers to treat in the US7. A test with a
higher sensitivity may help reduce burden on both patients and
the healthcare system by detecting more positives at an early stage
where treatment is simpler and does not require removal of the
bladder. In the emerging field of MCED testing, our test is unique
because while other tests have the potential to improve the
prognosis for later-stage cancer13, ours can provide higher sen-
sitivity for detection of early-stage cancer, as exemplified by our
~96% sensitivity for stage I and II PDAC cases.

As with any pilot study, there are limitations to acknowledge.
First, while informative for biomarker discovery purposes, our
relatively small sample cohort, and the inclusion of 100% early-
stage tumors do not reflect realistic cancer population character-
istics, and sensitivities may be lower when screening large,
asymptomatic populations5,8. However, since survival is directly
linked to detecting cancer early, we decided to exclusively focus our
cohort on stages I and II. Second, both cohorts are ethnically
homogenous, with sex ratios that may be skewed in comparison to
the general frequency observed in cancer between males and
females5. Third, our control population consisted of individuals
without a history of cancer or known confounding comorbidities
(e.g., chronic pancreatitis) that in a true screening setting may yield
additional false-positive results. Finally, this pilot study will require
independent external validation using larger cohorts of blinded
samples to verify the potential utility of this MCED approach.

In summary, we have developed a blood-based EV protein
detection test and demonstrated its potential role in MCED. The
EV protein biomarker test requires <500 µL of plasma and per-
mits integration into an automated workflow. Using a non-
invasive blood-based approach, we selected a panel of 13 EV
proteins that along with age, a known cofactor in cancer60,
allowed detection of stage I and II pancreatic, ovarian, and
bladder cancers with high diagnostic potential (AUC= 0.95).
Most importantly, we obtained a sensitivity of 71.2% at high
specificity (99.5%), a key factor for future screening efforts. This
test is the first to effectively utilize EVs in early cancer detection
via an AC electrokinetic, lab-on-a-chip, scalable platform.
Because the Verita™ platform has multi-omic detection cap-
abilities, the addition of other exo-proteins, exosomal mRNA,
and/or circulating DNA biomarkers is possible23.

The three cancer types studied herein (pancreatic, ovarian, and
bladder) are estimated to account for roughly 88,000 deaths in the
US in 2021, representing ~14% of all cancer-related deaths5. Larger
studies are in progress to evaluate this EV protein analysis platform,
with the goal of developing a truly effective MCED test capable of
providing meaningful information for population-level screening.

Data availability
All source data for the figures in the main manuscript are contained in Supplementary
Data 2, 5, 6 and 8. Source data for figures in the supplementary information are
contained in Supplementary Data 2, 3, 8, and 9. Additional datasets cannot be made
public at this time due to potential intellectual property or confidentiality limitations.
Requests to access additional datasets beyond those described in the manuscript,
pertaining to the development of the Verita™ platform and blood test, will promptly
undergo an internal review to verify whether the request is subject to any intellectual
property or confidentiality limitations. All additional released data and materials will be
subject to a data transfer agreement and provided. Requests to access the datasets should
be directed to the corresponding authors.

Code availability
The R package caret (Classification And Regression Training, v6.0-90) used in this study
to estimate the model, via recursive feature elimination with cross-validation, is available
at https://github.com/topepo/caret. The recursive feature algorithm used in the caret
package is described in further detail at https://topepo.github.io/caret/recursive-feature-
elimination.html. The code availability is limited to prevent potential misuse in screening
people from cancer, to pursue regulatory approval and, to allow for proper IP protection.
Interested researchers can contact the corresponding authors for questions on its status
and access.
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